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Abstract

Lactation plays the crucial role in mammals’ life. Uncovering the transcriptome signature of lactation process
helps to understand the molecular basis of milk production. To identify the genes that express differentially be-
tween early and late lactation, publicly available microarray transcriptomic datasets of dairy cattle were investi-
gated and the array results were validated by a next-generation sequencing dataset (RNA-Seq data from sheep).
Limma and edgeR packages were used for the analysis of the microarray and RNA-Seq datasets, respectively. Five
common differentially expressed genes (DEGs), namely glutathione s-transferase mu 3 (GSTM3 ), EGF containing
fibulin-like extracellular matrix protein 1(EFEMP1 ), fibulin 1(FBLN1 ), gelsolin (GSN ), and fibrinogen-like 2
(FGL2 ), were identified. The involvement of EFEMP1 in the lactation process has been reported for the first
time. The identified DEGs are involved in the development of the immune system and cell differentiation of the
mammary gland. A gene ontology network analysis revealed the key role of the GSN gene in the regulation of two
important functions of actin nucleation and barbed-end actin filament capping. The gene ontology enrichment
analysis showed that the function of calcium ion binding is statistically (P  < 0.05) enriched by the identified
transcriptomic signature. The approach presented in this study provides an integrative framework for finding the
signature of the lactation process by utilizing global transcriptome data, gene ontology (GO) regulatory network,
and enrichment analysis.
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Introduction

Lactation, the secretion of milk from mammary
glands, is a complex function in mammals, crucial for the
feeding of newborn animals. To execute the shifts from
the early to the peak and from the peak to the late lacta-
tion stages, mammary glands undergo dramatic physio-
logical changes. Several genes play vital roles in many of
the mammary glands functions, and the gene expression
changes during different lactation stages reflect the bio-
logy of lactation and the functions of mammary glands in
the mammals. The milk yield is dependent on the num-
ber and metabolic activity of secretory cells in the mil-
king stage of livestock’s lives. Accordingly, the lactation

performance may be improved by increasing the mam-
mary cell proliferation or decreasing the apoptosis of se-
cretory cells (Lin et al., 2015). Furthermore, factors in-
volved in the regulation of these processes in the various
stages of lactation can directly affect the mammary func-
tions and milk yield. Studying the expression profiles of
genes involved in the milk production over different sta-
ges of lactation may provide insights into the molecular
properties of mammary gland biology, morphogenesis,
and metabolic activity. It also improves our under-
standing of how milk composition undergoes conside-
rable modifications during lactation (Suárez-Vega et al.,
2015). During the last two decades, high-throughput
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technologies such as microarray and next-generation
sequencing have enabled researchers to investigate
more thoroughly than before the transcriptomic bio-
signatures of a given biological sample. There are se-
veral databanks that collect raw data for further ana-
lyses, such as the European Bioinformatics Institute
(EBI) and the National Center for Biotechnology In-
formation (NCBI). The microarray technology allows the
measurements of the mRNA levels of tens of thousands
of genes simultaneously in a given sample. The micro-
array has been widely applied in various fields of mole-
cular genetics and functional genomics to understand
the biological mechanisms underlying various processes
(Rays et al., 1996), to discover the molecular causes of
novel subgroups of diseases (Golub et al., 1999; Alizadeh
et al., 2000), and to examine drug responses (Dan et al.,
2002). RNA-Seq, a more recent sequence-based method
of gene expression analysis, uses next-generation se-
quencing technologies to obtain sequences from frag-
ments (reads) of cDNA that have adaptors ligated to one
or both ends (Wang et al., 2009). Unlike microarrays,
RNA-Seq does not require prior knowledge about the
sequences of genes, and therefore, is more suitable to
whole transcriptome studies even in species without a
genome draft. RNA-Seq enables the generation of ex-
tensive transcriptome information providing the capa-
bility to characterize transcripts, to quantify expression,
and to identify differential regulation in a single experi-
ment (Wang et al., 2009).

Information about gene co-expression is useful for
understanding gene functions (Obayashi and Kinoshita,
2010; Obayashi et al., 2012). Several databases on gene
co-expression analyses based on gene expression data
measurements have been developed thus far (Ebrahimie
et al., 2014). These public databases provide information
about the relative expression levels of many genes si-
multaneously. The change in the gene expression levels
between two genes can lead to the determination of the
similarity of expression called gene co-expression at
which two or more genes show a high correlation among
different whole transcriptome experiments or condi-
tions. It is expected that the co-expressed genes corre-
late with each other in a specific phenomenon (Mansouri
et al., 2014).

High-throughput analyses have been extensively used
in animal genetics in the recent years (Stothard et al.,
2011; Wiggans et al., 2011). These technologies can be

used for selection, i.e., the use of genetic markers to se-
lect the best animal/plant for large-scale production or to
develop animal/plant resistance to diseases.

In dairy animals, there are two important stages in
the lactation curve: early lactation until the peak pro-
duction (hereinafter called pre-peak), and late lactation
(hereinafter called post-peak) where the persistency of
lactation is an important feature of more-efficient lacta-
ting animals (Vijayakumar et al., 2017). The most distin-
guished feature of the milk production curve, however,
is the peak production at which the lactating animal ex-
periences a negative energy balance because of the high
energy exit (with the milk) and a low energy intake
(from food). Several high-throughput gene expression
studies on milk production using microarray data in
different animals have been performed to identify the ef-
fective genes in different stages of lactation and non-
lactation of different species (Bongiorni et al., 2009; Bio-
naz et al., 2012; Izumi et al., 2014; Vander Jagt et al.,
2015; van de Moosdijk & van Amerongen, 2016). More-
over, in another study, milk production was investigated
using RNA-Seq in sheep (Suárez-Vega et al., 2015).

The principal aim of the current study was to identify
the differential expression genes (DEGs) between early
lactation and late lactation, as the transcriptomic signa-
tures of lactation using high-throughput gene expression
data. Furthermore, a variety of computational biology
analyses, including gene ontology (GO) regulatory net-
work, hypergeometric test, and co-expression network
analysis, were carried out.

Materials and methods

Data collection and sources

To detect the genes that undergo significant changes
in expression and contribute to the differences in milk
production in various stages of lactation, we re-analyzed
the publicly available datasets. The flowchart of an ana-
lytical scheme for meta-analysis is presented in Figure 1.

According to the availability of the datasets, we clas-
sified the data into two stages of lactation, namely the
pre-peak and the post-peak stages. The data of a micro-
array study, with the accession number of GSE19055 of
mammary gland biopsy specimens of dairy cattle, were
obtained from NCBI (https://www.ncbi.nlm.nih.gov/).
These data were sampled at !30, !15, 1, 15, 30, 60,
120, 240, and 300 days (d) relative to parturition (Bionaz 
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Microarray Bovine Dataset (GSE19055) RNA-Seq Ovine Dataset (GSE74825)

Sample size = 31

BP = 16, AP = 15

Normalisation 
and DEG Analysis 
performed using 
Limma package

Sample size = 11

BP = 4, AP = 7

Normalisatio
and DEG Analysis
performed using
EdgeR package

DEG = 76
UP-regulated = 76

DEG = 46
UP-regulated = 25

Down-regulated = 21

Common
genes = 5 UP

System Biology Analysis

GO regulatory network Hyper-geometric test Co-expression network

Fig. 1. Flowchart of the meta-analysis of milk production in microarray and RNA-Seq dataset;
BP – before peak; AP – after peak

et al., 2012). The objective of this previous study was to
investigate the mammary gland transcriptome differen-
ces between late pregnancy and different time-points of
subsequent lactation. Samples related to 30 days and 15
days before parturition as well as those related to 1 day
and 60 days after parturition were excluded from the
analyses. The Limma package was used for the norma-
lization and differential expression analysis of this data-
set (Ritchie et al., 2015). Subtraction, loess, and quantile
methods were used for the background correction and
within and between array normalization, respectively
(Bionaz et al., 2012).

A sheep milk RNA-Seq dataset with the accession
number of GSE74825 was re-analyzed to validate the
results of the microarray dataset. The samples of this
dataset were collected on 10, 50, 120, and 150 days after
parturition (Suárez-Vega et al., 2015). Samples related
to day 10 were considered pre-peak, while samples rela-
ted to days 120 and 150 after parturition were consi-
dered post-peak. The EdgeR package was used for the
analysis of this dataset (Law et al., 2016; McCarthy
et al., 2012; Robinson et al., 2010). Finally, the common
DEGs were selected as the ultimate DEGs.

GO regulatory network construction

To predict a novel type of regulatory networks based
on GO interaction, a comparative GO was applied on

common statistically significant regulated genes (Fruzan-
gohar et al., 2015; Fruzangohar et al., 2017). Instead of
gene relationships, the GO terms of biological processes
were investigated for the construction of this type of net-
work. A regulatory relationship was established between
the biological process (BP) terms based on interactions
extracted from the GO database (Botstein et al., 2000;
Consortium, 2004). For the given gene sample of the
common regulated genes, the comparative GO built
a GO network based on the regulatory relationship.

In this work, the GO enrichment of up-regulated
genes was compared with the genome of Bos taurus by
using a hypergeometric distribution with a comparative
GO web application (Fruzangohar et al., 2013). The
hypergeometric test based on Fisher’s exact test was
used to find the differential distribution of GO enrich-
ment between our samples and the B. taurus genome.

Co-expression analysis and co-expression-based network
prediction analysis for DEGs

To perform the co-expression analysis, COXPRESdb
(http://coxpresdb.jp/) was used (Okamura et al., 2014).
We analyzed the co-expressed genes with the GSTM3,
EFEMP1, FBLN1, GSN, and FGL2 genes to find the po-
tentially co-expressed genes. Based on the mutual
ranking (MR) index calculated as a measure of the co-ex-
pression/relation, a co-expression-based network of the
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Fig. 2. Quality control of microarray transcriptomic data; box plot of microarray data: above – before normalization
and low – after normalization

GSTM3, EFEMP1, FBLN1, GSN, and FGL2  genes was
constructed.

Results and discussion

Data pre-processing and differential expression analysis

Raw microarray data are usually biased because of
some known effects such as mRNA preparation, cDNA
synthesis, and nonspecific hybridization. Therefore, to
ensure the acquisition of accurate results, the pre-pro-

cessing and normalization of the microarray data is ne-
cessary prior to the main analysis. Pre-processing remo-
ves the non-biological variation of the data and helps to
improve a subsequent analysis by providing a suitable
scale (Bolstad et al., 2003). Background correction is
one of the pre-processing steps. Some of the non-bio-
logical biases are systematic and can be normalized both
within and between the array levels. RNA-Seq data can
also be biased by all of the steps of library preparation,
PCR, and sequencing. To eliminate the effect of the



Transcriptome signature of the lactation process, identified by meta-analysis of microarray and RNA-Seq data 157

86
_D

10
05

_D
10

27
_D

10
63

_D
10

05
_D

12
0

63
_D

12
0

27
_D

12
0

86
_D

15
0

05
_D

15
0

63
_D

15
0

27
_D

15
0

86
_D

10
05

_D
10

27
_D

10
63

_D
10

05
_D

12
0

63
_D

12
0

27
_D

12
0

86
_D

15
0

05
_D

15
0

63
_D

15
0

27
_D

15
0

15

10

5

0

5!

Lo
g-

cp
m

Lo
g-

cp
m

15

10

5

0

5!

Unnormalised dat Normalised data

Microarray RNA-Seq

71 5 42

Fig. 3. Quality control of RNA-Seq transcriptomic data; box plot for un-normalized and normalized data

Fig. 4. Venn diagram of microarray and RNA-Seq dataset

known non-biological factors on the RNA-Seq data, the
trimmed mean of m-values (TMM) method was used to
correct the read-count differences that exist among the
samples (Robinson and Oshlack, 2010). Box-plots of nor-
malized vs. raw data are shown in Figure 2 and Figure 3
for the microarray and the RNA-Seq data, respectively.

In Figure 2, the samples indicated as “before” and
“after” the peak are shown with red and green colors,
respectively (BP – before peak; AP – after peak).

The results of the microarray data analysis revealed
a total of 76 DEGs between the pre-peak and post-peak
stages of lactation using FDR corrected P values
(P < 0.05). All of these genes were up-regulated at pre-
peak as compared to post-peak.

As mentioned above, the RNA-Seq data were ana-
lyzed to validate the results of the microarray data ana-
lysis. Because of the unavailability of the RNA-Seq data
with both pre-peak and post-peak samples in dairy cattle,
we utilized the Assaf sheep breed’s RNA-Seq data, in-
stead. In total, there were 46 DEGs between the pre-

peak and the post-peak stages of lactation. Out of which,
25 were up- and 21 were down-regulated at pre-peak.
The Venn diagram of common genes between the micro-
array and the RNA-Seq dataset is shown in Figure 4.

When we compared the results of the two analyses,
we discovered five DEGs in common. The gene names
and their description are given in Table 1. The GSTM3,
EFEMP1, FBLN1, GSN, and FGL2 genes were up-regu-
lated in the pre-peak as compared to the post-peak stage
of lactation. GSN is known as an effective gene of the
lipid metabolism pathway (Mach et al., 2011). The GSN
gene has been reported as a gene related to milk perfor-
mance and mammary morphology (Zheng et al., 2017).
In a previous study (Stute et al., 2012), the expression
of GSTM3 was assayed between the lactating and the
non-lactating dairy cows. The results indicated that
GSTM3 was significantly reduced with advances in age.
The results of the analyses of protein levels showed that
GSTM3 exhibited the highest fold change in the peak
lactation against the late lactation phases (Zheng et al.,
2017).

The RNase A family 5 (RNASE5) pathway, responsi-
ble for a large genetic variation in milk production among
dairy cattle, consists of 11 genes, of which FBLN1 is one
(Raven et al., 2013). Moreover, FBLN1 has been repor-
ted to play an important role in the development and cell
differentiation of mammary glands (Menzies et al.,
2009). FGL2 is a part of the immune system, and its ex-
pression in cows with multiple milking times is signi-
ficantly higher than in cows with milked once or twice
a day (Connor et al., 2008). Therefore, the results of the
current study are in partial accordance with the previous 
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extracellular matrix organization

mesenchymal cell migration

embryonic medial fin morphogenesis

barbed-end actin filament capping
actin nucleation

actin filament severing
skin morphogenesis

Table 1. Common significant genes between microarray and RNA-Seq data in lactation process

Gene
symbol Gene description Up/Down Fold change

in microarray
Fold change
in RNA-Seq

GSTM3 Glutathione S-transferase mu 3 (brain) Up 1.95 1.5

EFEMP1 EGF containing fibulin-like
extracellular matrix protein 1 Up 1.55 1.82

FBLN1 Fibulin 1 Up 1.93 2.54

GSN Gelsolin Up 1.74 1.96

FGL2 Fibrinogen-like 2 Up 1.89 1.76

findings (Raven et al., 2013; Connor et al., 2008; Menzies
et al., 2009; Zheng et al., 2017; Stute et al., 2012). Accor-
ding to the reports mentioned above, all of the DEGs iden-
tified in the current study, other than EFEMP1, are in
direct or indirect relation to the milk production. By im-
proving the functioning of the immune system, and stimu-
lating cell differentiation during lactation, the identified
DEGs significantly affect milk production. EFEMP1 has
been for the first time reported herein as a candidate
gene that may contribute to the differences in milk pro-
duction at different time-points of lactation.

This gene (EFEMP1 ) encodes a member of the fi-
bulin family of extracellular-matrix glycoproteins. The
encoded protein contains tandemly repeated epidermal
growth factor-like repeats followed by a C-terminus fibu-
lin-type domain. Mutations in this gene are associated
with Doyne honeycomb retinal dystrophy (Timpl et al.,
2003).

For the selection of studies, there were some re-
strictions including having samples for the entire lacta-
tion (BF and AF) and finding the microarray and RNA-
Seq data from the same species.

GO regulatory network for common DEGs 
in both microarray and RNA-Seq

The GO regulatory network for DEGs is shown in
Figure 5. Using a regulatory network, some researchers
interpreted the relationship between the GO terms and
their corresponding genes (Fruzangohar et al., 2013).
The predicted GO network (Figure 5) showed that two
functional groups, namely “actin nucleation” and “bar-
bed-end actin filament capping,” were located in the
center of the network and had the highest number of
interactions with the other GO terms. Interestingly, the
“actin nucleation” and “barbed-end actin filament cap-
ping” functional groups have the GSN gene in common. 

Fig. 5. Gene ontology (GO) regulatory network of DEGs be-
tween pre-peak and post-peak stages of lactation. The circles
indicate their splicing variants in each gene ontology group.
Green arrows indicate up-regulation and red arrows indicate

down-regulation of gene expression

According to a study, actin nucleation and barbed-end
actin filament capping have been indicated to be in-
volved in the immune system (Obino et al., 2016).
Therefore, we concluded that these two central GO
functions, in the GO regulatory network, influence milk
production through the activation of the immune system.
GO harboring GSN  has interactions with other GO
terms including extracellular matrix organization, actin
filament severing, embryonic medial fin morphogenesis,
skin morphogenesis, and mesenchymal cell migration.
The other GO terms, as indicated in Figure 5, have the
FBLN1 gene in common. Stromal – epithelial inter-
actions play important roles in the development of the
mammary ductal tree and are important in the embryo-
nic and postnatal evolvement. The stroma consists of
mesenchymal cells (fibroblasts, blood cells, and leuko-
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cytes) and extracellular matrix (ECM) (laminin, fibro-
nectin, collagen, proteoglycans, etc.), which influence
the mammary gland development. Mammary gland deve-
lopment is one of the most important factors in lactation
(Kass et al., 2007).

Comparison of GO distribution of common DEGs 
within the Bos taurus genome

A comparison of the GO enrichment of the common
up-regulated genes versus the GO distribution of the Bos
taurus genome performed using Fisher’s exact test
(hypergeometry) at the “biological process” level is pre-
sented in Figure 6. Among the three levels of the GO
terms, only the biological effect indicated a significant
term. Interestingly, during a biological process, the func-
tions significantly up-regulated by DEGs were related to
the calcium ion binding  GO term (Fig. 6).

Based on the data presented in Figure 6, the calcium
ion binding biological process is significantly higher than
the genome contribution (P < 0.05). Calcium is a major
chemical element present in milk. In the aqueous phase
of milk, calcium concentrates in the forms of ionic cal-
cium, calcium phosphate, and calcium citrate (Tanaka
et al., 2011). The concentration of calcium ions in mam-
mary glands is thought to be associated with the inte-
grity of the mammary gland during lactation (Neville and
Peaker, 1981). It can therefore be concluded that the

calcium ion concentration in mammary glands plays an
important role in regulating the physiological process of
milk production.

Genes co-expressed with DEGs

Genes that co-express with the DEGs were identified
using the COXPRESdb navigator (Obayashi et al., 2012).
The 100 genes highly co-expressed with each DEG and
their MR are presented in Tables S1–S5. Interestingly,
during lactation in the different experiments, all of the
identified DEGs showed high levels of co-expression
(Tables S1–S5). The MR index is a co-expression mea-
surement performed by taking the geometric average of
Pearson’s correlation coefficient rank from gene A to
gene B and that of gene B to gene A. The MR values
confirmed a highly significant co-expression and co-oc-
currence of DEGs during lactation. The MR index was
used instead of Pearson’s correlation coefficient because
the geometric average (MR index) is more accurate
(Obayashi et al., 2012). A smaller value of the MR index
indicates a higher co-expression (Ebrahimie et al.,
2014).

The C1R (complement component 1, r subcompo-
nent) gene is among the genes showing the highest co-
expression with the EFEMP gene (Tables S1 and S7)
and is involved in the mammary gland function (Khalil
et al., 2011). Therefore, it is interesting that with the co-
expression analysis of genes involved in developing
a specific trait, the other genes related to this trait can
be detected. Another gene, decorin (DCN ) is a mam-
mary-gland extracellular-matrix gene (Suárez-Vega et al.,
2015), which also co-expresses with the FBLN gene
(Table S2 and Table S7). 

The toll-like receptor 8 (TLR8 ) gene shows a high
co-expression with the FGL2 gene (Table S3 and Ta-
ble S7). It enhances the mammary gland’s defense sys-
tem during mastitis induced by Escherichia coli infection
in goats (Zhu et al., 2007). A study performed on Cana-
dian Holstein cattle on the enrichment of lactation persi-
stency resulted in the identification of the cytochrome
b5 reductase 3 (CYB5R3 ) gene (Do et al., 2017). In-
terestingly, in our research, the CYB5R3 gene showed
a high co-expression with the GSN gene (Table S4 and
Table S7). GTSM3 also showed co-expression with
other genes belonging to its family (GSTM2, GSTM1,
and GSTM4 ) (Table S5 and Table S7).
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Fig. 7. Co-expression-based network of DEGs involved in pre- and post-peak lactation including EFEMP1, FBLN1, GSTM3, GSN,
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Co-expression-based network of DEGs

On the basis of the co-expression analyses of the
genes, which were selected from different experiments
using MR, the expression networks were constructed
and visualized using COXPRESdb (Fig. 7).

In addition, functional annotations of these DEGs
were extracted on the basis of the biological process
classification of Gene Ontology (Table S6). As presented
in Table S6, a comparison of the functional annotation of
four DEGs suggested that the EFEMP1 and FBN1
genes were involved in the organization of the ECM.
The ECM is an intricate network composed of an array
of macromolecules, whose importance is becoming in-
creasingly apparent. The ECM is an integral part of the
machinery that regulates cell function; its role in cell dif-
ferentiation and tissue-specific gene expression has been
described (Lin and Bissell, 1993).

Conclusions

The microarray and RNA-Seq datasets are the most
frequent and important gene expression data, publicly
available for finding reliable candidate genes in a trait of
interest. In this research, using both microarray and
RNA-Seq datasets related to milk lactation in cow and
sheep, we identified five DEGs between the two studied
stages of lactation, i.e., pre-peak versus post-peak. The
identified five DEGs may contribute to the entire milk
production of lactating dairy animals by influencing their
productive potential at different stages of lactation.
Therefore, although there are many factors that influ-
ence the milk production potential of dairy animals, the
consideration of these candidate genes in the selection
and breeding procedures is recommended. Further in-
vestigation, however, is required to elucidate the effect
of these DEGs on milk production and to validate the
results of the current work.
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